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When a liquid jet impacts a pool containing the same liquid and
surrounded by a still gas, a surface depression is produced. The surface shape is

1 2SPt vt Xo
determined by the Weber number, We = 2 . In this work the shape of the

surface is obtained as a function of the Weber number by using an asymptotic
expansion technique.

INTRODUCTION

The entrainment of non-condensible gases by a plunging liquid jet

impacting a liquid pool is related to some important practical problems. For

example, the absorption of greenhouse gases into the ocean has been hypothesized

to be highly dependent upon the air carryunder that occurs during breaking

waves, which represent a type of plunging jet [Monahan, 1991; Kerman, 1984].

A Other applications include some type of liquid/gas chemical reactors. In order to

enhance the reaction rate, a jet of liquid entrains the surrounding gas reactant

forming a two-phase jet. The reaction rate is enhanced because of the increase of

AS the interfacial area density and the pseudo-turbulence produced by the entrained

I gas bubbles.

Other less obvious applications are associated with the slug or plug flow

j regimes. For example, in vertical slug flow, the Taylor bubbles move upward

with an almost constant velocity. The liquid film surrounding the Taylor bubbles
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drains downward forming an annular liquid jet. Therefore, a gas entrainment

problem, similar to the one studied in this work, occurs behind the Taylor bubbles.

In particular, a Helmholtz-Kelvin instability occurs at the interface in the rear

portion of the Taylor bubble such that smaller gas bubbles are entrapped in the

liquid plug behind the Taylor bubble. A difference with respect to this work is that

in the slug flow case the velocity distribution is nonuniform while in this work a

uniform velocity distribution was assumed.

DISCUSSION

Most prior theoretical studies were done for liquid jets with very low liquid

velocity, which had applications for the coating of fiber, etc. Recently, Lezzi &

Prosperetti [19911 performed a stability analysis considering the liquid jet and the

pool to be inviscid liquids and the gas to be viscous. They did not analyze the

surface depression.

Bonetto, et al [1992] analyzed an inclined plunging liquid jet. They assumed

that both the gas and the liquid were inviscid and they obtained the entrained gas

flow rate. The entrained gas volumetric flow rate is one of the most important

quantities which we want to compute in problems of this type. The key parameter

in such evaluations is a knowledge of the gas gap thickness (ie, the shape of the

inclined surface depression.

The objective of this work was to evaluate the induced surface depression

caused by an impacting liquid jet. We have assumed that both fluids are inviscid

and irrotational, and that the gas region is at constant pressure. Hence the

appropriate equation for this problem is the Laplace equation for the liquid and

the associated interfacial jump condition. The former equation has no parameter
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and the latter has only the Weber number, We 2 F , where x0 is the half-

width of the liquid jet.

We may use an asymptotic expansion technique to solve the problem. That

is, we may expand the solutions in terms of relatively small We number, and

substitute these expressions into the Laplace equation and the interfacial jump

condition.

Equating terms of the same order in We, one obtains a recursive system of

equations, which can be numerically evaluated up to third order. In other words,

we can evaluate the eigenfunctions of the problem. Once we have these

eigenfunctions we can compute the shape of the surface (and the velocity fields) as

a function of the We numbers.

ASYMPTOTIC EXPANSION

The purpose of this section is to compute the position of the interface, ii(x)

(shown schematically in Figure-i).

For the assumption of irrotational, inviscid flow the governing equations for

the liquid field are

V2  0 (1)

where 4 is the stream function. The two velocity components are evaluated as,

U= _ NTIS CRA&! (2)
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where u^ and V^ are the velocity components along the i and i axis, respectively. If

we prescribe a value of j,, or its derivatives normal to the surface, 4, for every

point on the boundary we have a well posed problem. As shown in Fig.-2, the

plane f = 0 is a symmetry plane then the lateral u velocity must vanish for every 9
at i = 0. Using Eq. (2)

(fi = ,)f = 0 f0,)=0 (4)

on the centerline of the plunging liquid jet. We know that the v-velocity must bev t

at positions where the jet is impacting. From Figure-i and Eq. (3), we see that:

v(0<£ <x Yo =0)= - a-- (0 <X^ < Xo 0 ) = (5)

For i > xo , the free surface position, ^ (f), must be coincident with a streamline.

Without loosening generality we make the free surface coincident with the

streamline j =0, then

7 =0 (6)

We may assume that the pressure in the gas region is constant and equal to zero.

The liquid pressure right under the surface is related to the curvature of the

surface by:

d2ri
= P( = pt [^ 2(i,- (i)) + -2(i,- ())] (7)

+ (jP " T T 
7
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where, cr, P1, Pl, 11 are the surface tension, liquid pressure, liquid density and

position of the interface, respectively, andii(ui~) 6ndv (io(fW) are the u and v

velocity components.

In order to have a well-posed problem we may specify 4^r for f^ -+ for every

37,i~ ~- oi) and ^, C^ -+ a.). One possible set of boundary conditions is:

If K %V(8)

We make Eqs. (M4-9) nondimensional, using x0, v, as the length scale and velocity

scale, respectively. It is convenient to work with nondimensional quantities.

Thus we have:

V2V = 0(10)

with boundary conditions,

(x = 0, y) = 0 U

V, (x, Y-+oo) =0 (lb)

41 (x-co*',y) =0 (11c)

ax0, cO -1Ox<l (lid)

1V(x~ii Wx) = 0 icx (le)

where,

U =ilz0 Y y=9X 0 11=/K
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S= a3 V , v =,/V t  and V

The velocity components may be computed from the stream function using Eqs. (2)

and (3) as,

u(x,y) = a- (xy) (12)

v(x,y) = - (x,y) (13)

The system of equations is dosed with

1--dx'rd* 2 =/ P(t 1 V ) [u2 (x,'(x)) + v2 (xl(x))] (14)

1 V hc

Notice that the only parameter is the Weber number, We = P which

appears in the boundary condition, Eq. (14),

In rder to solve the problem analytically we would have to get a solution of

the Laplace equation, Eq. (10) that satisfies the boundary conditions, eq. (11),

where the free surface depression, TI(x), comes from Eq. (14). Notice that the

solution of Eq. (14) is linked to the solution of V through u and v, thus the problem

is highly nonlinear.

Fortunately we use an asymptotic expansion technique. First, we may

expand all the dependent variables in terms of the We number obtaining-

n

i=O
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n

V(x,y) = 2 we' wi(xy) + O(We"+ l ) (15b)
i=O

n
u(xy) = I We' u(x,y) + O(We +1 ) (15c)

i=O

n
v(xy) = : Wei vi(x) + O(Wen +1 ) (15d)

i=O

Next we substitute Eq. (15b) into Eq. (10) to obtain,

V2 = V2 -+ WeV2, 1 + We2V2N,2 + ... = 0 (16)

Equation (16) holds for all We, and thus all -i must independently satisfy Laplace

equations:

V2 o = 0 (17a)

V2 = 0 (17b)

V2 2 = 0 (17c)

Using the same reasoning, it is easy to show that all the homogeneous boundary

conditions, Eqs. (11a) - (11c) lead to:

5- (xff0y) 0 i2!0 (18)

=0 i I 0 (19)

0 i 0 (20)

Let us next expand the boundary condition in Eq. (11d):
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(xj=O) + We -,(x,y=O)+We - - (xy-=O) + 1 (21)

Obviously the zeroth order term must be equal to -1 and all other terms must be

zero. Thus,

-- (x,y=O) = - 1 (22)

and

5T (xy=0) = 0 i> (23)

The boundary condition in Eq. (11e), and the interfacial jump contidion, Eq. (14),

require special attention. Using Eq. (15b), Eq. (11e) can be rewritten as:

O = 1(xi (x)) = Vo (xTl(x)) + We iV1(xi1(x)) + We2 V2(x,1T(x)) + ... (24)

Performing an expansion in terms of We in the neighborhood of I =0, we obtain:

40V 1 a--Vo 2

0 = V (x,0) + W (x,0)I(x) + V (x,O) W(x) +

+ W V1 (x,0) + (X) + 2 y (x,O)2(x) +""]+"" (25)

Substituting Eqs. (15a) and (12) into Eq.(25), and rearranging (ie, collecting terms

Wei), we obtain:

0 = V0 (X,0) + [u0 (x,0) rjl(X) + V, (X,0)] We

WeI2 1 + Uo1 2 + 2y 1 + V2(x' 0 )
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(u l o2 13+ 3 ) We4 ...(26)(U w 1 ,2 + 21ay 1 + U21 + Uo'13 + -W-7,I11 + 6 q1+V3(Xo) +

Thus, the boundary conditions for x > 1 are

Vo(XO) = 0 (27a)

VI(X,O) = - U©T, I (27b)

'2(x,O) = - 111 + Uo 2  + 2-" y) (27c)

+u 1 C I + 1}U eo 3 (7d
V3 (x ' O) = (U 3 + U1112 + 12111 + 2" iy I + "i 1112 + 6 111) (2id)

Notice that Vi has homogeneous boundary conditions for i 1 except for x 1

where its value is given by Eqs. (27). This set of equations is the result of the

asymptotic expansion of Eq. (11e). In order to get a closed set of equations, let us

focus our attention on Eq. (14), the interfacial jump condition. We first expand the

left hand side of Eq. (14) and then the right hand side.

The left hand side of Eq. (14) can be rewritten as:

d' i= (x) W ei + O(Wen+ 1)
d2 nd1 d 2  23d

1+ (dx" + d-x Ili(X) We i + O(We + l)

--- + Y-We+-v-We +We 3  2- +-2(t -

4 d2
1dh 1 d1 2  d 2 (dT 1 2 4+ W

+We4( 3 d -dx.dx + _xJ+O(Wde2) (28)
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Similarly, the right hand side of Eq. (14) can be rewritten as,

We[u2 (X,ri(x)) + V2(x,ii(X))] =

We {[uo(x,O) + -0 (xO 0jx ~-() 112(x) +

2 12- y

+We(u1 (x,O) +W (XO)*ix) + j- W(x 0)11 (x +..)

+ [VO + N(x'O)nx+1N (xO) TI 2x) +

Wj(X'O) + W~ (x O>T(x) + 21 O, 2 J]})n (29)

Using Eq. (15a) we obtain:

We[u 2(x,,j(x)) + V(,nx)

=WefIu0 (x,O) + 4(x,O) (no + Wen 1 + We2 I 2 + ... ) +.

" We (XO) + N (x,O) (no~ + Went + We2nj +.)]

" Ev0(x,O) + t-(XO) (T,0 (x) + Weni1 + W 2nt +2.)+.

Finally, we obtain



+ V2 ) We " +Vo ) We + We 22uyIll + uI) +2vo  I + v)

+We3 I-VO 2 V0  111+t-11 + I 'T + V21 + V + Ulf

+21 ''o +

We V 1][ l O' v ° 1la'o 2V° 2 +V2]

+W 12 lt-Il+ a 111+v o-q +y-112 +S y W l +

-'Vl 1 2Vl 2 ')V2 C-Vo  ')2vo  l3o3

[€\ul 1eUl 2+ C)U eUo I 3u0 3 1

+ \ 11 -- 2 + 2 y l--1 + -- 113 + -j 112r +  6 + Il+ 111 + U3]

" 2-- CIOIl + U -1 -1 l + - '- + I Ly2 1 2 + + ... (30)

Comparing the expression for the left hand side of Eq. (28) with the right hand

side of Eq. (30) we obtain:

d2o
d2 0  

(31a)

d 2 _ 2 2
All - (Uo2 + 2o  (31b)

d2 c2oni fU o these ordinary dfn1l oeqain are:

The boundary conditions for these ordinary differential equations are:
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i (x--- ) " 0 (32a)

dx (x 0)=0 
(32b)

Equations (27) and (31) are the expanded forms of Eqs. (lie) and (14), respectively.

Equations (17), (18), (19), (20), (22) and (23) complete the set of equations to be

solved.

ORDER ZERO SOLUILON

In the previous section we establidshed a set of infinite coupled equations

for Ti i(x). In this section we will analytically solve the order zero equation (i.e.,

the functions T, o'v u0, vo). The equation for 71 is Eq. (31a),

2

dii0

with the boundary conditions

o(--+) = 0 (33a)

d'no
'Ix- (x--4-) = 0 (33b)

The solution is

Iox = 0 (34)

The differential equation for Vo is Eq. (17a),

V2,Wo = 0

and the corresponding boundary conditions, Eqs. (18), (19), (20), (22) and (23) are:

Vo(X--,y) = 0 (35a)
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=0 (35b)

w (x-Ov)= 0(35c)

- X-(XY=) = I Ox~l(35d)

0<0<

jx X=)=0x>1 (35e)

It is convenient to use complex variables to solve the two-dimensional problem.

Let 0 be a nondimensional analytic function given by,

O()= (x,y) + i +(X,y) (36)

and

z=x+iy

and *, 4( are the real and imaginary parts of O(z) respectively. The function 4)(z)

is the complex potential, 0 is the potential function and Nf is the steam function.

The velocity components of u, v are given by

U= = &.I.(37a)

U = 4=-OV(37b)

and,

d4) U~iv(38)
dz=-i

We recall the boundary conditions (35d&e),
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(x,O) I<xl 
(39)ax 1t0 x>1

A function of x and y that verifies these boundary conditions is:

avo I [tg K-1)- ag ( +Y1(40)

This expression is the imaginary part of the following analytic function

d= 1 [log (z-1) - log (z+l)] (41)

We may use Eq. (38) to calculate the velocity components

uo = Re(,) (log [y2 + (x_1)2] - log y2 + (x+1)2]) (42)

V=-Im (0) l(atg (Xyl) - atg (l--) (43)
0O y Ly

Table-I shows the velocity of the zeroth order solution as well as the derivatives

needed for solving Eqs. (27) and (31). We now have the solution of the problem to

order zero. In order to solve the problem to order-n, we must:

(1) Compute uo (x,y=O) and vo(xy=O) using Eqs. (42) and (43).

d2TI,

(2) Solve -x- as a function of uo(x,O), Vo(x,0) (Eq. (36)) with the the proper

initial conditions (Eq. (32)).

(3) Compute V1(x,0) from Eq. (27b) for x > 1 using j11(x), uo(x,0), vo(x,O).

(4) Solve V2W I = 0 using 1Vl(x,O).

(5) Compute ul(x,0) = (x,6), vl(x,0), =- - (x,O) .
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TABlE-I

SUMMR OF TEOBDER.ZKR SOLUTONS

u0(x,O) = 1 log- X-1

v0 (xO) = 0

C)O(x,0) = 0

-v(x,0) = 2~x1x1

a2uo 4x
- (x,0) =

ay2

ZPVO xO) 4(3x2 +1)

- (x) = t -ict X -1)
~y 3
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(6) Evaluate -;- using Eq. (31c).

(7) Compute V2(x,O) from Eq. (27c) for x > 1, using %!1, 112, uo, vO, u 1, V1 .

(8) Solve VN,2 = 0 using v 2(x,O).

RTSIh

Figure-3 shows the analytical results for the solution of zeroth order
transverse velocity, uo computed at y = 0.

We have shown that To(x) is zero. The results for il 1(x) are shown in

Figure-4. This is the first correction term in the shape of the interface. Using
%rj(x) and uo(x,O) we can compute Vl(X,0) from Eq. (27b), the non-homogeneous

boundary condition for Vl(x,y). Figure-5 shows the curves of constant V1, obtained

with PHOENICS [Spalding, 1991]. Now, we have the problem solved up to first

order. We could compute the position of the surface in two possible different ways.

First, from nil(x), and secondly from Eq. (15b)

'Vo(x,y) + We Vi(x,y) = 0 (44)

It is interesting to note that these do not produce the same result. The reason

being that we did not solve the complete system of equations. In other words, if we

compute the shape of the interface as,

TI(x) = 1 Weii(x) (45)
i=O

where TI(x) will be equal to the y(x) obtained from the equation
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We'i$x,y) - 0 (46)

However, if we truncate the series and we compute only a finite number of terms,

we will not get the same result for the surface from the two methods. From the

result of Vl(x,y) we can compute the velocity components ul(x,0), vl(x,0). Figure-6

shows ul(x,0) and vl(x,O).

Figures 7-8 show the contour maps for V2 and V3, respectively. Figure-9

shows the velocity components corresponding to the stream function V2. Figures

10 and 11 show the second order eigenfunctions in TI, i.e., T12 and %. Figure-12

gives T1 x), the shape of the interface, for five different Weber numbers (ie, We =

0.1, 0.2, 0.3., 0.4 and 0.5). We arbitarily define the width of the gap between the

interaces (8) as the width corresponding to half the depth of the depression.

Figure-13 defines the gas gap width (5). Figure 14 depicts the width of the gas gap

as a function of the Weber number obtained from Figure-12 using the definition

from Figure-13.

SUMMARY AND CONCLUSIONS

This paper presents the results of an analysis based on asymptotic

expansions for the surface depression produced by a plunging liquid jet. The first

three terms of a Taylor series expansion in the Weber number have been obtained

for the surface depression. This approximation of the surface depression gives

correct values for small and moderate Weber numbers (ie, We < 1). However, for

We greater than unity, higher order terms become important and the analysis

presented here is no longer valid.

The results described in this paper show that as the Weber number is

increased, the terms that gain importance (i.e., the terms of higher order)



correspond to a surface depression that is increasingly narrower in the horizontal

direction. For a Weber number of the order of unity the surface tension is no

longer strong enough to keep the system stable and an instability leads to air

entrainment. That is, for values of the surface tension going to infinity (i.e.,

Weber number going to zero), the slope of the surface is very small, however, as

the Weber number is increased the slope also increases. For a critical value of the

Weber number, the slope of the surface is such that the surface tension is not

large enough to keep the pool surface from touching the plunging liquid jet and

thus air entrainment is produced.

The results presented in this paper cannot predict the route to instability

that produces air entrainment for two reasons. First, it is not clear that the

approximation of the surface depression is valid for Weber numbers that are high

enough to produce air entrainment. Second, the shape of the surface, T(x), has to

be a monovalued function of x and it appears that at the point where air

entrainment is produced, for every x (horizontal position) there is more than one

71 (vertical position of the surface depression).

It appears that it would be useful to compute the surface position using an

appropriate multidimensional Computational Fluid Dynamics (CFD) tool having

surface tracking capability. This will allow the relaxation of the small and

moderate Weber numbers assumption.
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Figure 2 Boundary conditions for the stream function
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Figure 3 Solution of the transverse velocity of order zero at the undisturbed
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Figure 5 Contour plot of the strem function, I1(xy)
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Figure 6 Numerical solution of the transverse and axial velocities of order one,
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Figure 7 Contour plot of the stream function, vl2 (xy)



Liquid Jet

x M

Figure 8 Contour plot of the stream function, V3(x,y)
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Figure 9 Numerical solution of the transverse and axial velocity of order two,
u2(x,y=O) and v2(x,y--O), respectively.
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Figure 10 Second order eigenfunction of the surface position, ii2(x)
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Figure 12 Shape of the interface for different Weber numbers
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